Environmental Chemistry

Course Objectives:

The objectives of a course in environmental chemistry typically aim to provide students with a deep understanding of the chemical processes occurring in the environment and their impacts on ecosystems, human health, and the planet as a whole with a comprehensive understanding of the components and processes of environmental systems, including the atmosphere, hydrosphere, lithosphere, and biosphere, and their interactions. Investigation of the chemical composition of environmental compartments, including the atmosphere (air pollutants), hydrosphere (water pollutants), and lithosphere (soil pollutants), and the sources, fate, and transport of pollutants in these compartments. To examine the chemical properties and toxicological effects of environmental pollutants on ecosystems and human health, including acute and chronic toxicity, bioaccumulation, biomagnification, and risk assessment.

Course outcomes:

- Gain a comprehensive understanding of the chemical processes occurring in the environment, including the sources, fate, and transport of pollutants
- Develop analytical skills in environmental chemistry, and apply a range of analytical techniques for the detection, and characterization of environmental pollutants.
- Aware of global environmental issues and challenges such as climate change, pollution, biodiversity loss, and resource depletion.
- Apply the principles of environmental chemistry for mitigating environmental pollution, promoting environmental conservation, and contributing to the development of environmentally friendly technologies and policies.

UNIT I

Environment Introduction, Composition of atmosphere, vertical temperature, heat budget of the earth atmospheric system, vertical stability atmosphere, Biogeochemical Cycles of C, N, P, S and O. Biodistribution of elements. Hydrosphere Chemical composition of water bodies-takes, streams, rivers and wet lands etc. Hydrological cycle. Aquatic pollution-inorganic, organic, pesticide agricultural, industrial and sewage, detergents, oil spills and oil pollutants. Water quality parameters- dissolved oxygen, biochemical oxygen demand, solids, metals, content of chloride, sulphate, phosphate, nitrate and mocro-organisms. Water quality standards, Analytical methods for measuring BOD, DO, COD, F, oils, metals (As, Cd, Cr, Hg, Pb, Se etc) residual chloride and chlorine demand. Purification and treatment of water.

UNIT II

Soils composition, micro and macro nutrients, pollution-fertilizers, pesticides, plastics and metals, waste treatment Atmosphere Chemical composition of atmosphere-particles, ions and radicals and their formation. Chemical and photochemical reactions in atmosphere, smog formation, oxides of N, C, S, O and their effect, pollution by chemicals, petroleum, minerals, chlorofluorohydrocarbons. Greenhouse effect, acid rain, air pollution controls and their chemistry. Analytical methods for measuring air pollutants. Continuous monitoring instruments.

UNIT III

Industrial Pollution Cement, Sugar, distillery, drug, paper and pulp, thermal power plants, nuclear power plants, metallurgy. Polymers, drugs etc. Radionuclide analysis. Disposal of wastes and their management.

UNIT IV

Environmental Toxicology, Chemical solutions to environmental problems, biodegradability, principles of decomposition.

Text Books

- ✓ Environmental Chemistry, A. K. De, Wiley Eastern
- ✓ Environmental Chemistry, S.E. Manahan, Lewis Publishers
- ✓ Environmental Chemistry with Green Chemistry, A. K. Das, Books & Allied (P) Ltd., Kolkata, 1st Edn, 2010

References Books

- ✓ Environmental Chemistry, S.E. Manahan, Lewis Publishers
- ✓ Environmental Chemistry with Green Chemistry, A. K. Das, Books & Allied (P) Ltd., Kolkata, 1st Edn, 2010
- ✓ Environmental Toxicology, Ed. J. Rose, Gordon and Breach Science Publication
- ✓ Erach Bharucha. Textbook of Environmental Studies, Universities Press, 2005